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ABSTRACT

This study treats the effect of the interaction between underground
structures and the surrounding soil in reducin6 the loads transmitted to the
structure, the so-called "arching" phenomenon.

A continuum theory of soils proposed by G. A. Geniev is applied to a
quasi-static, plane-stradn problem of arching. The basic partial differential
equations are shown to form a hyperbolic set and are solved by the method of
characteristics. Consistent stress and velocity fields are obtained.

Comparison with available experimental results shows that the Geniev
theory underestimates the surface pressure required for failure of an
underground structure in relatively dense granular soils. The source of
this difficulty is explained and an atnrovimate method of overcoming it is
presented.

A simplified extension to a theory taking account of inertia of the soil
and unsteady motions is treated in an appendix.
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1. INTRODUCTION TO THE SOIL-STRUCTURE INTERACTION PROBLEM

1.1 Object and Scope

The purpose of the m~ain part of this report (Chapters 1-6) is to

investigate the applicab lity of a continuum theory of granular media to

the problem of soil-structure interaction of underground structures. The

prob'am essentially involves a determination of the effect of "arching" 1,2

it' grani~lar soils an the pressure transmitted to a burled structure when the

ground surface is subjected to a loading in the form of an air overpressure

such as would result from the detonation of a high-yield nuclear device.

The air overpressure loading is assumed to result from an air burst

occurring either high above the ground surface or near the ground surface

with a superseismic velocity of propagation of the pressure wave, so that

only the air-induced pressure need be considered. The air-over-pressure

loading is assumed to vary slooly with time and to be uniformly distributed

ovet an infinitely large area as far as the underground structure is concerned.

A pressure distribution of this type is adlequte for an Introd-wcory study.

iror the truly dynamic problem moare realistic pressure distribution Is

needed. In the si~erselsmic case the pressure woe" propgates downward

through the %*I) Inclined at an a"gl to* the ground surfttce. 1houeer for

simplicity the pressure wave is asvs*me to propagat vertically dos rJ

with the wave front parallel to the grwAewJ smrfa."L.

The soil I i considered to be a hosgoemeaus. Isotropic. granwlar

material having som cahesien and gatisfying the Caulomi,446 fai lure

criterion wnhich states that slip or failure occurs at a point ulem the shier

stress on som place through the point Is e"ua to the san of the cohsion

and a function of the normsl stress acting em she sawa plane. On me pians



can the shear stress excceed this sum. The function of the normal stress is

taken to be a constant, namely, the tangent of the angle of internal friction

(;, times the siormal stress. The fact that the failure criterior, depends on

the hyd1rostatic part of the stress tensor and not simply on the deviatoric

part, as is the cate in the theory af plasticity for metals, adds an Important

compflcation to the problem as will be seen later.

The structure to be cewisidered 's a long, rectangular plate, simply

supported at the edges. It is assumed that the length-width ratio of the

plate is large, so that conditions of plane strain will prevail aiway frou

the ends of the long side. It follows from these assumpt ions that the behavior

of the structure may be considered to be that of a beau, and the problem may

be formulated in two-dimensional plane strain.

The depth of burial of the underground structure is in the shallow

range with the mwxium* depth of Interest on the order of twice the spon

length. it is in this range of depth& that the effect of arching In the soil

is expected to be a m.*Is. Although the attenuation of free-field air-

ov~lpressure by the toll may be signlfic..eit in this tango,. only :%e1

redistribution of pressuej caused by soil -structure interaction will be

considered in deteruining the pressure transmitted to the structure.

An importent effect of the **;Il on the mature of the pressure, wavq,

porticu'rly for dypnic studies. leads to am increase in the riso time of

the pressure pultec as the wave propagates dowword t.hrough the soil ".*Tit

?nfreased rise time tend* to redtice dynauic. effects.

1.2 lumoy of Previovs !ftrk

Ckne of the earliest stodits of the tsell-strweivre interaction

problem to a~.ear in the literatuire was Tertaghils "Trap Owl, eaperimen,. 1



With a simple device he showed that a small downward movement of an under-

ground structure results in a large decrease in the intensity uf pressure

applied to the structure. This type of behavior is of interest for the design

of tunnel liners or large underground conduits as well as the design of

underground blast-resistant structures.

Several methods have been used to evaluate the effect of soil-

structure interaction on underground structures subjected to air-blast load-

ings. One study was made by considering the soil to be an ideal elastic

material. Spherical and cylindrical models were treated by considering a

uniformly distributed, radially symmetric pressure, and using equations of

equilibrium and compatibility fron the theory cf elasticity. The method was

applied to shapes of structures other than spherical by considering the

compressibility of the structure, that is, the change in volume due to

externally app!ied loads.

Another approach considered only the Rankine passive earth pressure

9
developed by the soil as a flexible two-hinged arch moved into the soil mass.

The problem was reduced to a single-degree-of-freedom system consisting o" a

lumped mass restrained by a weightless spring with the configuration being

defined by the radial deflection of the arch at the quarter-point :-f tte aroh

rib. For all arches considered, the response was found to occur H, the plastic,

or yielded, part of the assumed elast';-,'mstlc resistance diagram for thie

soil.

A more realistic approach utilizing the class;cal Rankine earth

pressure theory has been made by considering both the active and passive states

of stress in the soil and the different soil masses entering Into the response

as the arch deflects.3 In this case, the structure consisted of four rig~d,

3



massless bars connected b). rotation resisting springs. :n determining the

dyne.nic response of the two-degree-of-freedom system, the masses were

assumed to be tencentrated at the bar connections. The blast 3verpressure

acting on the ground surface of the soil failure wedge was taken into

account in determining the total resistance of the soil mass.

A dynamic analysis based on the formation of vertical slip planes

in the soil between the structure and the ground surface and a uniform

distribution of verti,;al stress on horizontal sections has been made for
10

pseudo-steady state air overpressure0 In this analysis the failure mass

of soil is considered to undergo a rigid body motion along with the

structure. in this theory no account is taken of the propagation of the

pressure wave through the soil or the associated dyna-mic soil-structure

interaction.

4



1,3 ri.:, ,on

A list of primary symbols used in the first six chapters i7

summarized for convenience in ther fo0lowing.

a xay M components of acceieration in the x and y directions

H a depth of burial of structure

K - ratio of horizontal to vertical stress at a point in the soil

k a soil cohesion in units of stress

L - span length of structure

Po a intensity of overpressure at the ground surface

q a intensity of pressure loading on the structure

r,e a polar coordinates

vxvy a components of velocity in the x and y directions

X,Y m, intensities of body force in the x and y direction

x,y a rectangular coordinates

Cu , direction of the velocity vector measured counterclockwise
from the positive x-axis in rectangular coordinates

a * direction of the velocity vector measured counterclockwise
from the positive radius vector in polar coordinates

w * direction of the maximum principal stress measured counter-
clockw;se from the positive x-axis In rectangular coordinates

- direction of the maximum principal stress measured counter-
clockwise from the positive radius vector in polar coordinates

r w '/4 - CP/2. Physically, the Inclination of possible slip
planes to the direction ot princi•0a. ou,5ss

4,icy a components of wtrain in the x and y directions

4 ,x y components of strain.rate in the x and y directions

rxy a shear strain

Ixy a shear strain rate

_mi c

S -" ' ".-, " i • " . ." ". -" - " " :5



Eq - rectangular coordinates on the characteristic plane

p - density of the soil mass per unit volume

0x,0y - components of stress in the x and y directions

T shear stressxy

01.02 - principal stress

an,'n I normal stress and shear stress on failure plane

a combined stress and velocity variables

S- angle of internal friction of the soil

X w angle between the x-axis and the charrcteristic curve

- -6; ••" 1 . • :



2. DYNAMIC THEORY OF GRANULAR MEDIA

2.1 Assumptions

The theory of the dynamics of granular media to be presented in

11
this and the next two chapters follows that of G. A. Geniev . In applying

this theory to the problem of soil dynamics, it is assumed that the soil will

benave as a continuous and homogeneous granular medium having a shearing

resistance consisting of the cohesion, which is assumed to be a constant

independent of the stress state at a point, and internal friction, which Is

assumed to be a linear fiinction of the mean normal stress.

It has bee. shown by experimentI that the resistance to slip along

a plane through a typical point in the medium is given by

Lrni a 0 n tan ip + It (2.1.1)

where a nn the normal and t3ngential compOnents of the stress vector

acting at the point,

- the angle of internal friction,

k a the ;..thesion.

Planes In the soil medium on which the relation

max I i-(an tan +I)]'O (2.12)

Is satisfied are called slip planes. At any point In a region of slip there

are two plaaet along which slip may occur. The one along which silIps actually

occur is called the "active slip plane.,$

When equilibrium Is destroyed, a velocIty field resulting from the

relative motion of the soil particles Is set up In the soil. It Is .ssuod

-- :: ; ... . " ''1]' = • i • .: .• .. I i ,! !I ! !



that this velocity field will satisfy the eouation of continuity from the

theory of continuous media. It is further assumed that when $low occurs

the stress components may be expressed in terms of the strain rates.

As stated in Chapter 1, the two-dimensional plane problem will

be considered in which the stress components ax , *y, Vxy and the velocity

components vx and vy are expressed as functions of the space variables x and

y and the time t. Since relatively large displacements are expected, the

problem has been formulated in Eulerian coordinates so that the motion is

expressed in terms of the components of the velocity field rather than the

displacements of the particles. After a complete velocity solution has been

ottained, the particle displacements may be found by direct integration.

2.2 Equations of Notion

Figure 2.1 shows an infinitesimal element of the soil medilu which

is in a state cO flow and which is acted upon by the direct stresses ax end

1y and the shear stress xy. The sign convention adopted here takes cam-

pressive stresses positive, so that the imward normal stress acting on a

surface of the element shown in Fig. 2.1 is positive if the inward normal to

the surface is in the direction of the negative coordinate axis. Positive

shearing stress on a surface acts in the negative direction of oem coors'nate

axis when the inward normal to the surface acts In the negative directIL'.

of the otter coordinate axis. This sign c.&-v&.I:lof! is oposite to the Usual

convention In the theory of elasticity; however, It is convenient since

the normal stresses usually oecountered In soils are compreslions.

If X and Y are the intensities of the body force and p is the mast

per unit volime, the equation of motion in the x-direction of the elemunt in

Fig. 2.1 is:



p X dxdy- (ax+• dx) dy dy- (+ + dy) dx

+ dxm dxdy a
xy x

where a is the acceleration of the element in the x-direction. This equationx

may be written as

X- 1--- + a-•) -. (2.21)

Similarly, the equation of motion in the y-direction yields

i (l + X -a• (2.2.2)

In Eulerian coordinates the acceleration terms a and a in Eqs. (2.2.1) andx y

(2.2.2) are expressed as functions of the velocity components, v. end vy by

a + VX + Vy - (2.2.3)

aye +X *. ý; +X Vy eZ (!.3.4)

Using these expresslons, the equations of equilibrium bec

X . X1 - N + y (2.2.5)

e * ,, X y Vy

ix..Z * 4.y x 4  (2)

2.3 oll. |r•CirltriOn

As stated earlier, slip will occur wtee Owe stress le nts

satisfy the relation

ra|



max j [•a1 " ( tan p + k) -0

The points on a Mohr stress diagram which satisfy this relation form an

envelope of poss;ble states of stress at failure. One such stress state

is shown on the Coulomb-Mohr diagram in Fig. 2.2. The radius of a Mohr

circle for a state of stress satisfying the failure criterion is

2 (aI - 02) -" max. where a, and 02 are the maximum and minimum principal

stresses. The principal stresses aI and 02, and MAX. are related to

xy-components of stress by

( (x o+j2 (2.3.1)

02 i(ao+y) + )+4 (.32)

- / x., I (2.3.3)

Expressions for an and rn are obtained from Fig. 2.2 to be

an ( + - Gx .4 %1on.. (2.0.')

S•bstItuting Eqs. (2.3.4) and (2.3.6) Into the Coule* failure

criterion, Eq. (2.a.m), One obtains:

20 2 o 2

(o .' v) , 4, , $ n n (j n + n kct9)(.3 V



It may be seen from Fig. 2.2 that the two possible slip planes are inclined

at angles 17 to the direction of the maxiw,'- principal stress, where the

angle 7 is given by

(2.3.7)

The angle between the slip planes and the x-axis is determined by

introdur'ng the angle 0 which is the angle between the direction of maximum

principal stress and the x-axis. Then the slip planes will iorm at angles

P y 7 to the x-axis, as is shown in Fig. 2.3.

2.4 Equation of Continuity

According to the theory of continuous media, the velocity components

and the density are related by the principle of conservation of mass In the

fol Ilow ing way:

if the medium is Incompressible. the equation of continuity

becomes:

•-- • 0(z.3.g)

2.S The Kinmatic Relations

The kinematic relations are expressions whicht relate the stresses

to the velocity field. The wo stih relations to be considered here **e

based on the folluwln assumptions:

I. The shear strain rate is tken to be a Imiim a0long9 the

direction of active slip, (2.1.1),
II



2. Tne velocit' vector is restricted to coincide with the

directions of active slip, (2.5.2).

The first of these relations considers the soil to be essentially

a truly continuous medium while the second attempts to account for the

behavior of a medium consisting of a system of particles whose dimensions

are small but not insignificant.

The theories resulting from each of these relations will he

referred to as the continuum theory and, as Genitv calls it, the macro-

structural theory, respectively.

2.5.1 Kiqematic Reiation for the Continuum Theory. Figure 2.4

shows the Mohr circle of the s:rain rates d , and which are

rlat.ld to the velocity components by

and

The direction of the mawmim shear strain rate with respect to the

x-axis It given by the angle X. which from Fig. 2.4 Is

tan. (2.. am



Since the maximum shear strain rate occurs alng a slip lino- in

this theory, the angle X is:

X * (1 ± 7)

In Fig. 2.5, this relationqhip is shown clearly. Then from Fig. 2.4

N avx

tan 2(0 ± 7) - z- (2.5.2)

From the Mohr circle of streises shown in Fig. 2.5,

tan 21 - y (2.S.3)
M y

Combining Eqs. (2.5.2) end (2.5.3) , the kinematic relation betvssn the stress

and velocity fields Is obtained for the contilnm theory.

6V (v &Vw

Ox oy a tan av a (

This may also 4e written as follows:

r l
13 tao1

0, oy aw-

x ~ j [~I~ tan 9215

13



2.5.2 Kinematic Relation% for the Macro-Structural Theory. The

second kinematic relation Is based on the assumtion that the velocity vector

coincides with the direction of active slip. This assumption follows by

considering a state of motion in which the !Loil grains are moving in tubes

or layers of flow formed by adjacent stream lines as shown In Fig. 2.7. The

smallest spdclng of two stream lines Is given by the dimensions of a single

particle, and the velocity of nlow in any layer varies with the width of that

layer. If relative motion occurs In the soi; medium, slip will take place

along the boundaries of the layers of flow. that is, along the streaw lines.

$Ince the tangent to a stream line represents the direction of the velocity

vector, the velocity vector may be assumed to coincidq with the direction

of lines o0 active slip.

in Fig. 2.7 a field of active slip lines &Wd the direction of the

velocity vector at a typical point Is shown.

If 0 Is the angle, between the direction of the velocity ond the

x-amis. Fig. 2.7 gives

v
tooa --1  (ZIS-)va

Ner*. the direction of the slip line at the point Is a&I" given by the "isle a.

a*(2.S.it

Then

v
tan it a y) - (3..5

Va

on Cq. (2.5.2). the stress coponents are related to the "1@l 30 f-I the

Mohr circle.

14



ton 2l 11 - 0
x y

Since

V

tan 2(0 t T) 2 tan (I t r) v VX (2.5.9)
I- ten2 (it-) v 2

and

ton 2( t o ,t.n ' (2.5. 10)t~n21 t ) I; ton V tn "

On expression for ton 20 may be obtaind.

¥ V

v v

Cm.ini"I tqs. (I.S.ii) and (23.3). snd noting that one Obtain* en Awutim~

wui~h reottes tow stre'As end velocity fields

fit I v- t

Is



Thus, the five unknown funct:ons oa y, X y v x and vy are given

by the f;ve equations, (2.2.5), (2.2.6), (2.3.6), (2.3.8) or (2.3.9). and

(2.5.5) or (2.5 12).

!t may be shown that the kinematic relations coincide it% any

region where the streamlines are paralle. and the flo is steady. In this

case the velocity vector does not vory with time or position, that is,

dv u t C+s dx + t dy - 0.

where dA and dy refer to a segent of stream•ine.

Since the flow is 'teady. * 0. Dividing the above equatlon. by dt, on*

obtieis the following expresilon-

t- (2.S. V)

The velocity v may be expressed in terns of vx .d vy by:

2 *v * 2 (2.S- 14)
vV V y

Diffetent~ating tQ. (2.S.14) Witt rtpect to i, an expressicm for is

obtairId. Similarly is foer.d.

2~ (2 )w S. .0

16



Substituting Eqs. (2.5.15) into (2.5.13) and solving the resulting
v v

quadratic expressions for -- and -!, it turns cut that:
v vx y

v X (2.5.16)vx y Vx
v 7 V

Thus, it may be seen that the two kinematic relations given by Eqs. (2.5.-!)

and 1.2.5.12) coincide in any region of steady flow with parallel stream lines.

17



3. TRANSFORMATION OF EQUATIONS Bv THE METHOD OF CHARACTERISTICS

3.1 MeLhod of Solution

Since the five equations relating the five unknowns form is system

of first order, quasi-linear partial differential equations of the hyperbolic

type, it is possible to formulate a procedure for the solution of these

equations by tht method of characteristics . In this formulation, the

system of five equations in five unknowrý is replaced by the differential

equations of the characteristics and the differential equations called

"characteristic equations," to be satisfied along the characte istics. The

solution obtained by integrating the cha.acteristic equations along the

characteristics is equ valent to the solution of the original system, but is

generally more converient to obtain since the characteristic differential

equations and the differential equations of the characteristics are ordinary

rather than partial as in the original problem.

The method will be developed for the quasi-static case of an

incompressible soil medium In this casl the terms N x/8t and N y/at a&e

neglected, and p is taken as constant, which resultt in the five equations:

+ 3v-. N (3.1 I)

+v -

(x - ) *4 rxy 2 sin2 4) (a +o y V 2k cot 0) (3.1.3)

Ty I -

Iv O

" I l~ l lullI•1 llnn I In ! II )



I ,V v t 3v vx t

2 -y T zx ' Tr ±v(3.1 ,5)
x uy ( av- + ) tan (P

or

lv vS( -I A -- tan 4P
v v- (3.1.6)

X~ ~ 2, v .. -)tn(

The last equation, (3.1.5) or (3.1.6), is taken depending on which kinematic

relation is used.

3.2 Transformation of Variables

It is convenient to define four now unknomwn In terms of the

original five, so that the algebraic equation of the failure criterion (3.1.3).

is automatically satisfied. Th;-t will reduce the original system of five

equations to four equations in the four new unknosns.

The principal stresses aI and a2 may be expressed in terms of the

stress components a, Uy, and v xy Fra the Rohr circle of stresses, Fig. 2.b:

,o(a * +4 a + 44 1T
aI -(u *A ) - -y xy

a,=• (aj~y 0y 1 i
2 2 A y 2 a-'y

so that

(01, o-It0

_ m y.1 " - --- ' i i .1



and

a + a Oa + C 2  (3.2.2)

Talking the square root of both sides of Eq. (3.1.3) and using Eqs. (3.2.1)

and (3.2.2). one obtains the equation of the failure criterion in terms of

the principal stresses:
a 1 *02

1 + a2 " -- "- 2k cot (p (3.2.3)

The stress compunents a x a y and r xyare given by:

I ( a + a ) + 1 ( C a I C) o 21

i 2 ' 2 2

y " ("I + 02) " .' (01  02) Cos 2

I a (a - a2) sin 2A

Using Eq. (3.2.3), these eqtvotlOs becme:

o - a (' s sin cot 20) - k cot 9 (3.2 4)

Vo a Do (I - cos 9 cos 2) - k cot " (3.-.S)

It PL (sin 4 sin Z2) (3.2.6)

where

I o
S2 sin

- - - .



On the Coulo*-.Mohr diagram, po represents t.he distance from the intercept of

the failure envelope and the normal stress axis to the center of the Mohr

circle as shown in Fig. 2.2.

The velocity components v and v may be expressed as:

x y
v - v Cos a (3.2.7)

v * v sin G (3.2.8)Y

where

S=- angle between the x-exis and the velocity vector v (Fig. 2.6).

3.3 Character;stics of the Continuum Theory

Using Eqs. (3.2.4). (3.2.S), (3.2-6). (3.2.7) and (3.2.1), the

original equations with the kinematic relation of the continuum theory may

be expressed in terms of the new ukushons q, 0, 1, And v.

cos (+ r) *Iun (0e ) + 20j tan IV Cos (+ ') sin (0 r)] +

Cos +01 sin ('& ,. Co A)+ i
•mA

- COS T) () a (3.3.1)
Cos O Co.
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" tan [a (±T][ Cos ( + ± y T s + sn ( )

cos ; -r) sin (Pt- 0 (3.3.3)

" cot[Qa (0±rT)][ s in (A t r) - CaCos (P -t +

sin (P ( C) os (Pi ± r) - 0 (3.3.4)

where A * X sin (15 - y) - Y cos (0 - T)

0 s4 Sin ( y- ") + Y cos (0+ T)

Tne first two equations of this set represent the equations of

equilibriuwm in the directions perpendicular to the slip lines%. Eqs. (3.3.3)

and (3.3.04) express the conditions that the normal strain rates vanish in

the directions along and perpendicular to the slip lines. It is now easy to

set theL the set (3,3.1). (3.3.2) is equivalent to the set (3.1.i), (3.1.2),

toreoter, (3.3.4) and (3.3.5) taken together guarantee that the volumetric

straits rate is sero (the center of the circle in Fig. (24) is at the orngoo.

In aEdition. the normal strain rate of zero on a slip line then Ilplies a

maxima shear strain rate on this line. The eq ;a'.,cp %ith the origina;

set for the first kinematic conditito is row apparent.

The characteristics of fqs. (3.3.1) to (3.3.4) may be defined at

those curves y - y~x) across which it is possible for the derivatives of the

unknowmn functions a, B, 0, amd v to exhibit finite discontinuities while the

functions thmsetves remain continuous
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Along the curve y a y(x), the unknowns satisfy the following

differential relations:

do-• dx + 7- dy ; d+ T- dy

(3.3.5)

da.- I; dx + dy" dvm dx + dy

Equations (3.3.1) to (3.3.4) and (3.3.5) are a system of eight

algebraic equations in the eight unknown derivat;-es of , a. 0, a.ed v with

respect to x and y. Eliminating all derivatives with respect to x from

these equations, the following equations are obtained involving only derivatives

with respect to y:

a I b I c 1 0 ty'• K I

& 2 1 0 K2
. (3.3.6)

o 0 c3  d .t K3

o 0 C 4 C ,

where

1 -dasin (1 + y) - dy cos( + )

• -dx sin (1 - y) - dy cos ( "r)

b - 20 t on 9 P aI

b 2  tan -2 t a

V

'I
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V2
c 2  0 -SPaI

cost I

c3 v tan [a - ( ) dx sin (13±T) -dy cos (0±r)

C v cot a - (P T) [dx cos (0-± -) + dy sin (P ± T)]

d 3  . .[dx sin ( A ± ydy cas (0 ± ( . 7
(3.3.7) ;

d 4 [dx cos (0 t n) .dy sin ( T)

2

-KI cos (0 + T) do + 2o tan (p cos (A + -) dft + s cos (P -T)l d'

A
+ - dx

Cos 4p

2

-K2 = cos (0- y) do - 2a tan q cos (0- ') d- ccs (0 + y) d

+ -L dx
Cos 9

-K 3  a co% (P t r) {vtan [a (0 t T)] do - dv}

K4  a sin (0 t r) {v cot [a (0S t y)] do * dv}

If the determlfllt of the matrix of coefficients in [q. (3.-36) 1-

"not zero, the d4rivativeI of the unkn*oflI may be determ•ned Unlquely along

the curve y * y(x) . H&wever. if the sIoPe !U Ut tiw iilvt y - y(X) is such

that this determlnat does vanish, then the derivatives of the unOken:m

functions along the curve are tot uniquely determlned. ad the curve Is called

a "characterlistic.-

The characterilstics may be obtained by setting the eetetraflmmt 0

of the coefficients In Eq. (3.3.6) equal to zero.
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al bl CI 0
a b 2 ¢2 0

D a 2  = 0 (3.3.8)
0 0 c3  d3

0 0 C4 4

This determinant is equal to:

D b 1  'c, d.3  (3.3.9)

,a2 b2  4 d41

Equating the first of these determinants to zero, leads to the first system

of characteristics.

1 12 b2_ 0 or 4a tan i • aI a2 * 0

This gives

#1 tan (0 + Y) (..0

and

Ae ( (3.t.11)
da

where T ;s the angle between the slip planes and the direction of greatest

principal stress. see Figs. (2.2) nd (1•3).

these are the characteristics of the stress field, since they ere

a conseqence of the stress *qution L-,0. Since a system of two real

characteristic directions Is obtained, the original eqations have been sh.n

to be hyperbolic. Tho stress field characteristics are inclined to the

a-e*.s at angles (0 f T) . that is. at the saw angles as the lines of slip.

__ence. the lines of slip will coincide with the stress field characteristics

on the sy-plane.
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Equating the second of the determinants in Lq. (3.3.9) to zero leads

to the second system of characteristics:

c d 0

4  4

or

dx-tan (3 ±Y.) (3.3.12)

A, a -cot (0±i)(3.3.13)
dx

These are the characteristics of the velocity field. Ihe angle

(+ T ) or (W r ) is used according to whtthor the active slip line makes

an angle of (13 T ) or (ft - y) to the x-axis. Thus, one of the veloc ity field

Claracteristics coincides, with the active slip line amd the other is

orthogonal to it as is shown in Fig. 3.1.

The characteristics. or lines along %Khich the derivatives of the

wriknown functions may be discontinuoujs, have been obtslneil by setting the

determinant of the coefficients in El. (3.3.6) equal toti ero. 14oeever. for

any solut ion to exi st at all for the derivatives, the equ~ations mu~st not :w

inconsisteiit. that is. the doterminiant obtained by replating any column of

the matrix of coefficients on the left-hand side by the nonhomoreous part

of the equations must also vorish.

Replacing a column of coefficients on the left-hand side by the

column on the right-hand side of Eq. (3-3,G) and setting this determinant

equal to zero, yields the relation which must be satisfiled 4lon the charac-

tepristics. As before the relations decouple into stress field and velocity

field actuat ions.
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Replacing the third column on the left of Eq. (3.3.6) by the column

on the right and setting the determinant equal to zero leads to:

K3  d . (3.3.14)

K4  d4 1

for the velocity field.

Evaluating this detetminant yields:

along "1 " tar. (is tI)

v tan [0 - (t ) dCZ - dv - 0 (3.3.IS)

along AX - -cot (P ± r)

v cot [0 - (t r)] dQ+dv-O (3.3+6)

The characteristic equations of the stress field are obtained

from the folIow•tng dttenlfinat:

a K1  C€ 0

a K- c2  0 0 (3.3.17)

0 K3  c3  83

SK4 c4 44

Since the functlon Q has been determined from the velocity field, the

coefficients aI d cz times the derivatives of I may be treated 3s kneom

quantities.

4 1 K I - c1

K -C 0 (3.3. I s)
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This yields:

a long auK
dx I ITY

(3,3.19)

!Xcng- tan (K ' )'; K 0
dx 2 2

Using Eqs. (2.3.7) and simplifying:

dx Cos2 0 co d0+--) (3.3.20)
Cos (0 +) T7+- AOL___

cos q cas (13+ y~c

and

Co 0Cos (Psr)
Cos 7F 7Y

1 V& (34D2

where Iand are evaluated by substituting either d tan (P T )

or~X tan (P - Tr) into th. lost two equations of the system(3.)dx

The basit equations of the so;I medium with the first kinematic

asswmt ion have been transformied into a set of characteristics and a *tt of

ordinary differential equations to bit integrated along each of the character-

*isti cs.

3.4 Characteristics of the NAcrv-Striacturel T:ec'

Atcording to the second kinematic reletloon. the velo~i.ty vector Is

directed along the active Stll line (see (Q. I.S-7). from Eqs. (3.2.)) and

(3.2-6) the velocity components v ax WWVI are given as functions of A and V:

via v Cos (tar)

vV O



Using these relations in Eq. (3.1.6) satisfies the kinematic

relation of the macro-structural theory identically. As pointad out earlier,

the transformation of variables (3.2.4), (3.2.5), and (3.2.6) will satisfy

Eq. (3.1.3), the failure criterion, identically as well. Substituting

Eq. (3.4.1) into the equation of continuity, (3.1.4) provides the equation

relating v and 0. Using this, along with Eqs. (3.1.1) and (3.1.2) transformed

to the new variables o and 0. one obtains the basic equations of the macro-

structural theory.

Cos (0 *r) +T- sin (13*i) +

+ 20 tan P roe Cos (+ Cos + 1ci(- )* [sin (0 * ) +t 2 sin (+-v)}

+ 0 (3.4.2)
Cos 9

* - 0 (3.4.3)
COS,

sin (a t 0 cot (0 ] Cos t(T) + 6 in (5 ] 0 (3.4.4)

where t "
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The characteristics of these equations are found in the same way

as in the continuum theory.

Consider the differential r.,ations along a curve y - y(x) in the

xy-plane,

do a I; dx + y dy

d- a tdx + 7- dy (3.4.S)

3v vdv -n dx + 7Y- dy

Using these ,-elations to eliminate the derivatives with respect to

x in Eqs. (3.4.2). (3.4.3) and (3.4.4). one obtains the follotwing equations:L 0b# IK
whe, r*

*a a d, sIn (D +r) - dy cos (i Y y)

a 2  a d- sin (is- ) - d4 cos (is- r)

bI a 20 t"n 9 (a t a a 2 )

b2 -a - an 9 (a 2 " 2 a1)

Sv fdA Cos (a t T) + ey sin (i I ry)

b3

E. I da[ sin (IO * I) " dyc.s (02T 1) (3J.4.7)

-.l * y) do Zo t.n • cs(0.) *I 2 Cos (is- )e

A dx
LOS t

I I I I I I I I I I I I I I I 1 I I I I i



-K 2  cos - r) do - 2a tan m •T y) + cos (l +T)] dO +

6 dx+
Cos q

K3 . sin (p ± y) di + cos (0 ± y) dv

From Eq (3.4.6),

K2  b2 (2 K2

a1 ý_ (3.4.8)

and

To obtain the characteristics of tIhe stress field, the determinant

in the denominatnr of Eqs. (3.4.8) is 5et equal to zero. This gives:

2a tan 9[7 a a2 + t 2 (a 2 + 2)] 2 0

Using Eqs. (3.4.7), this simqIifiet t-):

2mS(I t sin g) sin t•, c U 1 (3.4.1o)
X (I + 2 sin i) .os #- . (t 2 s4 n S )

This equation gives tOe slopp of the characteristic curve. If X it the angle

between t*.e x-axis and the characteristic cuve at any point, then

tan X a
d3
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Let T be the angle between the maximum principal stress direction and the

tangent to the characteristic curve. Then,

tan X - tan (3.4.11)tan • = tan (X - I•) T + tan X tan ..

Substituting Eq. (3.4.10) into (3.4.11) yields:

2

tan 4 - 1±1-7 tan T (3.4.12)

or

t tan' tan 2. (3.4.13)

The relation between the slip line direction and the characte~ristics is

shown in Fig. 3.2. Equation (3.4.10) may also be written in the forts

-*tan (A 1 j) (3.4.14)
dx

it is of interest to consider the effect of the factor I n i

42a sin

Eqs (3.4.2) to (3.4.4) for various values of •. If 0 .0, this imlies

that v 0 0. This is the static case (or which

tany - tanr, or - t"

and the stress *ield coincides with the one frm the cc',inuum theory.

If, In a dynamic case • * 1,

and

tan aO , or 0
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for *,his cas: the characteristic curves coincide with the direction of maximum

principal stress. When the veincity exceeds the critira! speedrita sin il

the equations bs~come elliptic, and the method of ci~racteristics does not

apply. The existence of a~ critical speed is an unbxpected consequence of the

thc'or,, ;:nee hyperbolic equations are expected in dinamic problems. Howeever,

for the quasi-static case, che difficulty of a critical speed does not arise.

The differential relations to he satisfied along the characteristics

of the stress field are obtained by settirg the foliowinS determinant equal

to zero:

a1  0 (3. 1. 15)

tr~panving !hii deierminanot and using Eqs. (3.4.7) and (3.4.14), one obtains

the characteristic equations of the st-ess field.

Along !, tani (o +
dx

dX (cw + S~ c~)do + 20 tan ( [c1 - SC~, + 1L (c~w S c ) ] dl

- ... L..(3.4 16)

Along dx tan (

JX(C. + S c V)do, - 20 a PIC (c V S C.)] M

wheree

Cos t+ r) Cos
w Cos- tp4 I ) -~w MCos t

(3.4.15

C Co S w r) ,. 0 Co -* -
v Cos to Cos t -v



The characteristics of the velocity field are obtaitied by setting

c3of Eq. (3.4.9) equal to zero. This gives:,

tat (0ton (3.4.19)

Here the + or - sign is used depending on whik-h slip line family

from the stress fluld is #%;t've.

Equation (3.4.19) shows that the characteristics of the velocity

field coincide with the families of slip lines. This is to be expectad from

th? basic aisswi~t~oi of the macro- structuralI theory which roquired that the

velocity vector at any po'nt coincides with the direction ot the slip line

at that point.

The differential equations to be satisfied along the velocity

characteristics or* obtained by setting the numerator of Eq. (3.4.9) to zero.

K 3  b, 3  *0 .. 0

Using Eqs. (3.4.1) . thIs becomes:

Along d ton (~+ T)

8* d 414 + ton Ir I + j (cut - Cos *0 d + v #v
coas-rTI-T #/Cs/c (3411

AMong !X -ton ( yi)

8* do Is tanq[+ ta(c V + S C" v d

Cos II A /os 9(3.4.22)
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where

C os S s n* 3 r
ul cos (+1 +u )cos +"

(3.4.23)
Cos (1p + T') S s in (It - *)u2 Cos (p - ") u2 Cos U5

3.5 Characteristics in the Static Theory

it will be useful to present the development of the method of

13.15
characteristics for the equations governing the statics of %oil media

These equations are:

-- 0

y - 0+ (3.5.1)

2 2 2in

( + 4 xy sin 2  (ax + a0 V 2k cat e)

Transforming to the now variables o and 0. the last of Eqs. (3.S.1) Is

satisfied identicolly and t•he follouIn* two equations are obtaimnt:

cos ( + ÷ r) " sin (0 + T) )

20Z tan co9(4'' sin +P r)] +

cos ( -T) + sin (-,) -

-20 ton 0 Cos (0 - ' + sin (0 ] * 0 O.S.3)sin - j Cos 9 *
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whe re

A = X sin (0 - r) - Y cos (0 -

B -X sin (1 +r) + Y cos (0 +T)

Using the same procedure as in Section 3.3, the characteristics

of these equations are:

S- tan (0 + T); tan (0-r) (3.5.4)
dx dx

and the differential equations to be satisfied along the characteristics are:

do + 2a tan (P d5 - 0

(3.5.S)
do - 2o tan qp dD - 0

Equations (3.5.5) may be integrated to yield:

2icot in a -0*const - t(u)

(3.5.6)

S2JIn a *pconst w (s

Nere. a function of o, minus 0 is a constant on mers of one family of

characteristics. and a function of a. plus A is a constant on me rs of

the other family. Equations (3.S.6) may be solved for aWnd the function of

0.

ct In ()*'()

(3.S.7)
0• - [-t(u) + * z

As in the theory of plasticity, special cases arise weIn a particular

region eitng considered. j arW q are constants. t along is a constant, and

-- alone is a constat.t , 1
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When both I and q are constant functions in a region, Eqs. (3.5.7)

show that both a and f are also cw•stants throughout the regior. When this

is the case. both familV-s of characteristics are straight lines and the

region is called a 01regjion of constant state, 1 6 ' 1 7

When eithrr t alone or I along is a constant, one of the

characteristics (3.5.4) wtil form a fan of straight lines. If the fan is

centered, that is, if the straight line characteristics intersect at a point,

the region is cailed a "region of radial shear'

3.6 Transfcrniation of Lharacteristics to Polar Coordinates

for later work in polar coordinates it will be convenient to replace

Ci and 0 b. similar angles & and A measured from the positive direction of the

radius vector r .,nd the directions of the velocity vector and of the maximu

principal stress, respectively. The angle 0 is defined as the counterclocbeisi

zngle from the y-axis to the radius vector, as shown in Fig. (3.3). The

fol~olng relations may be easily obtained from Fig. (3.3):

8-1I.e.I

3*1

Po!ar ceordinates will be used later when In a *orticular problem

the inactive fAilly of slip lines corilts of a cente-ed ftn of straight line

character'stics. In this case the aIgle A in polar coordinates has a

constant value equal to:

That is to say, slip actuaally occurs along the other set of slip lines.
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- + T for i- tan (+y) active
dx

or (3.6.2)

r- for - tan ( r - r) active
dx

In polar coordinates the velocity field characteristics given by

(3.3.12) and (3.3.13) become:

dO_ c _ ot_ (v
dr - r

(3.6.3)

Tr r

In transforming the equations to be satisfied along the charactefistics, P,

cx, dO and dv in Eqs. (3.3.15) and (3.3.16) must be determined from the

expressions (3.6.1) and (3.6.2). These give:

0 +Gt
+ 3x

S, -;(3.6.4)

do - d& + d@

dv a dv

where dO may be obtained from (3.6.3).

Using (3.6.4) n (3.3.1S) and (3.3.16) yields:

tan 2& r) [d& i - 21 dr dv-r dv
(3.6.5)

cot ( 0 d&)+[d& 4 dr + *v .

where '.he - or + sign is taken depending wbether the active slip lines are

incilned at an angle (P+ T) or (T - y) to the x-axis.

3.



The characteristics in polar coordinates for the second kinematic

assumption may be easily obtained by transforming the basic velocity Eq. (3.4.4)

to polar coordinates and then finding the characteristics fron the transfnrmed

equation.

Transforming (3.4.4) to the polar coordinates of Fig. 3.2 yields:

fin4P I Cos 0+1 fin,. (3.6.6)

Again. the sign in the second term is selected according to whether the

active slip lines are inclined at (P + T, or ( y - ") to the x-axis.

Since characteristics are lines along which or may be

discontinuous, and along which the relation

dv - dr de (3.6.7)

holds, the system (3.6.6) and (3.6.7) may be solved in the usual way to yield

the differential equations of the characteristics.

dr r

Integrating (3.6.8) gives the equation of the velocity field

characteristics and active family of slip lines.

r -can I (3.6.9)

The differentil equmotion to be satisfied air-.g the charecterlst;cs

(3-6.9) is:

dv ; ton 9 do (3.6.10)

or upon integration:

v-v (3.9.11)
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4. NUMERICýL SOLUTION OF EQUATIONS

4.1 Finite Difference Method of Solution

In general, the solution of the differential equations to be satis-

fied along the characteristics can not be obtained analytically. However, a

solutior can be obtained numerically b7 transforming the equations to charac-

teristic coordinates, and then converting the diffrrential equations Into

difference equations along the characteristics.

The region in which the solution is to be obtained is divided Into

a network by the uz- characteristic coordinates as shown in Fig. 4.1. The

solution proceeds in a step-bf-step fashion by obtaining the values of the

unknowt's at the point k after the values of the preLeding points*Bk.5
k.1

and 6 k-1. have been obtained. At the start of the computations, points

and b correspond to points on the Initial curve for which

initial values are prescribed.

Let u(x.y) be the coordinate measured along one family of cherac-

teristics asd z(x.y) the coordinate alon9 the other family. In the ua-

plane

du at da y

and (4.1.1)

di + a 41

Solving for dx and dy
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where

C•u az au az

Since x - x(u,z) and y , y(u,z)

S(4.1.3)

and

dy du +4 dz

Equations (4.1.2) and (4.1.3) yield the fol,•owing transformation relations.

(4.1.4)

if for any function f, f f(uz) ten:

•(4. -

erivatives with respect to the characteristic coordinates u,z are aproxi-

mated by the following finite-difference expressions:
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6kl ~ XkI. Xk. -

"k-- k- is :f ; , I

A.2 Equations In FinIte-iifference Form

Along the characteristic u -u(A.y) -coflit.,

du - dx4~ .0 .2)

if the velocity fielad characteristic given by (3.3.12) Is named the one along

which u -u(x,y) -const., Eq. (4.2.1) becomes

;1,,..

da - t cog ( ) s+ (IR -)- 0 (4.2.2)

Similarly, along a & (ax.y) - const., using Eq. (3.3.13)

di SI U ... (4.2I.:0)

Using (4.1.4) In Eqs. (4.2.2) and (4.2.3) yields

4' ft cog(~r .- ti 610 r -

Along the s.har(tterls u y ) -€ ont. (4.2.4),
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These are the characteristics of the velocity field in the ux-plamo.

In a like manner, using (4.1.4), (4.1.5) and (4.2.4) In Eqs. (3.3.15)

and (3.3.16), one obtains the equations to be satisfied along the character-

Istics in the form

v tan [a - ~r1 ~ u0

(4.2.6)

Equations (4.2.4) and (4.2.5) may be expressed In flnite-differenue forv by malnln

u-e of the difference quotients (4.16.).

k,,.,.,,.,.,] (O.1,..,,1 %J..,,.],,.,Ma,,. k4o
(4.2.4)

, k ,S ,,., n. , (,k.,.,,,)* [&..1 %- ..3 (W.O., ,1) 0

[kai.. h.kA-* l (*iJ *hIA-11)

(1.2,7)

cot +hl. AA

Istilcs, toq. (3.6.3), I polmr seo•dlmtee is j



( - -1 + c r k. r k .1-1

(4.2.8)

. . (- . -- -- fl (rh r: 1 ,, n*m0 mm

lIhe equations along the characteristics take the finite-differtnce form

tan 27) Lk.1 - k,A- - r-O rkIt 1 - jj -( L' k .J.J kj o
r kpi-ik.1-1

.4tLg)

co 3 , ~-, too {r k.- rkk I *(2h:W o4 .0
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S. PRESSURE LOADING I~N BURIED STRUCTURES

5.1 Stress Field So~ut on

The theory presented In the previous chapters will be applied to

the problem of determining the Intensity of pressure ac~ing on a structure

buried In a granular soil %%on the ground surface is subjected to an air-

induced over--pressure anid the structure is Pon the verge of collapse. For

this case, the Pressure tpplied to the structure corresponds to a measure of

its ultnmate strength.

The structure considered Is a plate having one %iide much longer

than the other so that the two-dimensional state of plane strain will prevail

at regions away from the ends of the long side. TakIng the xv-plan, perpendicu-

lar to the long axis of the plate. the slip planes will form as slip lines 6,1

the xy-plane.

The intensity of pressure, p0. appilied to the giound surfacs to

assumed to be uniformly distributed over a large ar"a, and directed vertically.

Sinr~e there Is no shearlhig stress at the grou.id surface, the vertical stress

In the soil at the siurfaet is a principal stress equal to p, . The structure

is azsumed symmetrical, so by virtue of rymmestry the vertlcal stress along

the axis of symmetry All In Fig. 5.1 Is also a principal stress.

Ir general, as In the Theory of Plostlinty, the stress field equations

can not be tppiied directly to a specific probl.'- to ubtafl the required failure

pressure. Howavor, a solution Is obtained by finding & Proper stes00 field

for which there existtS a comatible velocity field setisfying all velocity

bokindary conditions A

The families of stress characteristics of slip lines haWe certain

geometric properties which facilitate the construction of a stress field
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from, 9:vcn conditions at the boundary. These oroperties were first presented

•Q 19
by Hencky '• and Prandtl for the Mises Theory of unrestricted plastic

flow. One of the most important of these geometric properties is that the

angle formed by the tangents of two slip lines of one family at the points

of intersection with a slip line of the other family is a constant no matter

what member of the other family is taken,

From Eq. (3.3.9), it is seen that the stress and velocity fields

mi'iy he considered separately. Additional properties of the slip lines are

given by the relations derived for the static theory of Section 3.5 when the

quasi-static problem is considered in which inertia forces are not considered,

Since the intensity of applied over-pressure is a constant, a region

of constant state consisting of two families of straight slip lines forms at

the ground surface. Similarly. assuming a uniform pressure applied to the

structure, we have a region of constant state adjacent to the structure.

The horizontal principal stress in the soil at the ground surface

is taken to be the maximum principal stress as a result of arching in the soil.

Teizaghi 7 has verified this behavior experinientally. With the x-axis vertical.

the value oi I in the constant state region at the surface is either to/2- The

direction of maximur- rincipal stress at the structure Is vertical so that

the angle 11 undergoes a total change of x/2 and is equal to zero In 0he canstant

%t-.c region adjacent to the structurs.

Figure 5.2 shows the network z'f characteristics for the itress field

solution -f the quasi-static probelm, The stresq field is d;,ided into

four regions, the two c nstent state regions, COC' and 000' and the centered

fans OCO and C0'0'. In symmietricr.; probleis bot?. famils•s of slip lines will

bh actve s. c tht aluong he limItImg active slip line CO, dy/dx w tan(fl-r)
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and a'ong CID', dy/dx tan(4T4), The u and z families of characteristics are

given in region DOD' by the differential equations dy/dx a tan0Tr). In this

rejion I'he mn~le D " cont. a 0, since the iirection of the maximum ptincipal

stress coincides with the direction of the x-axis. Then tA equations of

the slip lines are given by

- x tan y + ci (u-famlly)

y * x tan r- + C2  (z-family)

where c, and c? are arbitrary constants and the u-family is active.

The characteristic for region C0C' (0 1 const. - x/2) are obtained

in a similar way to be

y a x cot -" + c 3  (u-fsi ly)

y a - x cot T + C 4  (2-family)

In region OCO it is convenient to express the charecteristic net

by a system of plane polar cop.rdi•ntes with 8 mnesured countarclockwifM as

shown in Fig. 5.2. Were. the direction of the maximum principal stress Is

given by the ang!e 1 which Is measured with respect to tI red:4u vector

from point 0 ta~ing cousterclockhise positive. Since the redil froo point 0

are members of the iiective family of slip lines in relion OCO, the a&"gle

Is constant in this region (cf. tqs. I.n.2). •en•.ar ceordiwtes th,e

differential equations of tim stress field characterlstics in relion 0C are

Mai

-r (u-famil ly)

a 0 (g.-fl Wy)

dr
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They yield

r -r Ie- 9-r) tan 9 (u-family)

e9 a 9 (Z-fami ly)

The u.-family of active slip lines form a fami~y ot logaritliaic spirals given

Ly toe firsz of Eqs. (5.1.4).

The relations to be satisfied along the characteristics given In

Section 3.5 are

~-0 ~ const.an u-famlly

cr+8 t~cons t .onz- tam II y

whegre

cot_ T I O + kcot~ T

2 1 + s in ~'cosrn

.~the constant stnte region 000', b)oth 4 and i~are constants. Thus. this ragion

transforms int. a iOnole polint on tha line Y * on the giq-charscteriatllý

plans shaiin In Fig. 5.3.

on the right-hendi side of the axIk of sysiintry AS. the mrnixwmm

principal stress direction changes from 0 to 90 degr~ee solth respett to the

x-dIxis by a coontorcloliGwise (pOsItivr). rotation, -so (to "via. 0 le. region

AOC Is + a/2- On the left-4hand side of All, the w' Oem prIncipal #st.os

geires-timi changes by a clockwise (naiat ivo) rotation of 90 ohgreen. so the

value or 3 in reglo.' AOCI is - %12. in 2otwral, the pr~ape .19. of the

tnqlo 5 must bt used In determining the CorreCt Va~uec of the *tr*$n ca-



Regions AOC and AOC' are shewn in Fig. 5.3 as points On the gil-plane.

The centered fans OCO and OCID° transform irto the lines | - const. and I1 a .•ufst.

connecting the constant state regions, Although the region COC' is transformed

into two points on the characteristic plane, only one need be considered since

each point yields the sme values of stress comonents.

The applied pressure p0 required to develop the assumed stress

field may now be deteemined. Us;n$ the first of Eqs. (5.1.5) to determine

the value of t in regions AOC and BOO in terms of the pressures p% and q,

it may be seen from Fig. 5.2 and Fig. i.3 that these values must be equal.

By equating the values of IACC and I o the pressure po is obtained as a

function of the ultimate plate resistance q.

in region AOC. ax p Pad W a S/2. From the first of Eqs. (S.1.S)

99 in + It cot 9)

91 WC 'WA&C ' NOC --- in 4T .! --fl (596

in region S %OC, " ad 0 "O. Then

ts.. lns 1 I-~1 -051

Since tAV" tW

- 44+In I a ta n I Itln

q ct -ý91U v



Then

PO a (q + kt cot (PF 1. a o'P(..0
aLI + sin I

For CP 30., k - 0 (ideal granular material)

p~q[~;~v t3 tan (

or

po a 2.03q

Expressing the soil cohesion It by the relation

k U

Eq. (5.1.10) becomes

p 0 q[(' + Ckcot V)f(w) -Ckcot 91(S.1.11)

here

C
sI -

It sho..l be noted that Ehis solution cewrespoids to a Portiouet

depth of burial depsndIng on the spen lenth L ee the agle of intenlal

oro

fxprictiong the soil 0.oesio nky the arbire a ryti

fEs. (5,I4.O the equaiono i ieC sotlo

ro a q Is " *Ct'' (0 ) + kCto" vS ,



The length OC is found by setting e = + Y

OC - OD e" (5.1.13)

From this the length CC' and the depth H may be found In terms of the span L.

CC' - L cot r e tan (5.1.14)

H - L 1e • tan q ÷ jcotT

for V - 30"

"-•-•30"
4 2

Then

CC' 0.7OL

and

N 1.071

it should be remembered that the solution obtained here Is valid for only one

depth if the span of the structure and 9 Is given,

5.2 $olution for Arbitrary Q._et

The solution for the stress field obtained In Section S,1 Is bas*4

on the asstmtion that the entire region bounded by the limiting s0.0 linet

CO and CID, Is In a state of plastic equlllbriwu. Uslin this assumtioned

the stress field of Fig, 5.2 leads to a particular ratio of depth to span

length for given soil properties. The velocity field corresponding to this

stress field will be given later.
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When the depth of burial is greater or less than the "critical" depth

given by Eq. (5.1.15), the failure region bounded by the limiting slip lines

may contain zones which remain essentially in the elastic state. In these

elastic regions the distribution of stresses is unknown since the bjasic

equations of the analysis do not apply. However, if an elastic zone forms on

a boundary of the failure region, it may be possible to determine the total

pressure transmitted by the elastic region to the interior and to obtain a

solution without knowing the stress distribution completely. Such an approach

was used by Hill, Lee and Tupper 20.21 for the problem of a ductile material

aompressed between rigid plates.

Solutions for depths less than the ,critical" may be obtained by

assuming that regions COC' and DOD' are not fuily plastic and that the angle

0 in the plastic regions OCO and OC'D; undergoes a change of less than 90

degrees in going from 00 to OC. If O0c and boo are the values of 0 slong OC

and 00 and p0 and q are taken to be equal to ox on OC and 00. then the failure

pressure p0 is given In terms of q by

aq +C o)[ It top i 00  [ t - 00)] - Ckcot 91

where

Ck q

The depth of burial N will now be found In terms of BOC a 8c.

The equation of the curve CO is given by
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r = GDe"(0 + 2 " -"O)tan e (5.2.2

Since 0C= - /2 4 :10C, Eq. (5.2.2) becomes

OL - OD e(OC " OD)tan qp (5.2.3)

S ince

2 sin( + )OD

and

OA - OC sin(r + -

the depth H and the length CC' are given by

r s:n(y + •3
H cot(y + 80) + . C 2 0C 0D t a (5.2.4)o s ir, (Y + O

and

CC - L sin(T + !IOC) e.(5OC -*000 )tan TP(5.2.
1c - sin(Tr + !o) )s,.I•

when 0C R */2 and 'qO0 " 0. Eqs. (5.2.4) and (5.2.5) reduce to

H u Fcot T + C n 2 (5.2.6)

J

and

. tonpV
CC' L cot 1 e" 2 (5.2.7)

These are the same as Eqs. (5.1.14) and (5.1.15) given in $ection S.1.
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Equations (5.2.!) and (5.2.4) yield a range of failure pressures

for any particuiar depth depending on the values of O and O used. The0 ODx

proper values of 0 and 0 are the ones which yield the smallest failure

pressure at a given depth. Figure 5.4 shows the configuration of the failure

region for the critical depth and for three other cases in which the depth Is

les3 than critical. These cases are for a cohesionless material with an

angle of internal friction P equal to 30 degrees.

When the depth of burial is much greater than the critical depth.

the state of stress at the ground surface will be affected only slightly by

the arching of the soil above the yielding structure. It has been shown

experimentally 7 that the pressure of a yielding structure in a granular

medium has little or no effect on the state of stress at the ground surface

when the depth of burial is on the order of 2 to 3 times the width of the

yielding element. If the state of stress at the surface !s not a'fected by

the yielding structure, then it may be concludnd that failure as defined

herein wll not occur. the structure will be safe provided that it has

sufficient deformation capacity to absorb the energy of the initial impulse

applied by ,he pressure wave.

Solutions for depths gremter than the critical maL be obtained by

considering the stress field at the critical depth to be extended by a region"

consisting of elasti[ zones and a centered fan in which the angle 0 undergoes

a change of less than 90). As the depth increases, the change in 0 approaches

90' asd il at the ground surface approaches 0*, the value corresponding to the

state of stress existing in the soil if no yielding structure was present.

A stress field for a depth greater than the critical is show In

Fig. S.S(a). Considering the regions to the right of the axis of sysimetry.
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the failure region consists of the critical-depth field, regions 6AC and 666.

and the centered fan 6C6 in which I = const.

Regions 6AC and 6OB are taken to be in the (!O'tic state, that is,

they move as rigid bodies. As in the case of the solutions at depths less

than the critical, the velocity field associated with this stress field will

develop if the structure move5 vertically downward with a uniformly distributed

velocity so that the clastic regions may move downward without deforming. The

l0ilure pressure obtained on the basis of this assumption should be a mlnimum

since any other motion of the structure requires the elastic regions to become

partially or, completely plastic and, thus, more work must be done by the

external loads in defoming them.

In the centered fan OCO, the angle 5 changes by an aswunt varying

from 0* to 90' depending on the depth. When the changa in 0 is less then

90', the point on the ri•.plAne representing region 050 falls between the

* n/2 and R P 0 lines as shown in Fi3. 5.5(b)

Figure 5.6 shows the stress field for the citical depth end three

other cases at a greater depth for a cohesionless material with T - 30. It

may be observed from the values of failure pressure given that above the critical

depth the pressure required for failure increases very rapidly. This be14vlor

should be expected on the basis of the experimental results mentloned previoutly

The effect of angle V on failure pressure at critical derth N Is

shown in Fig. S 7. the sensitivity of failure ratsure to varlatlom of V is

apparent here A plot of failure pressure versus depth is given In Fig. S a

for T - 30" and k v 0. Here the large increase in failure pressure for depthr

greste, than the critical is clearly shown.
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5-3 Veioeity Field Solution for the Continuum Theory

The equations of the velocity characteristics and the differential

relations to be satisfied along them for the quasi-static incompressible cose

are (cf. Section 3.3):

u - const. family

-rtan ( ± v tan (a.3k -)) (a - dv - 0 (5.3.1)

dx

z - const. family

!X cot (8 Y). v cot (a - (8 1 y-)) do + dv - 0 (5.3.2)

dx %

For the regions to the right of the axis of syntetry All, the active

family of slip lin~es is given by the equation

A - tane i t ) (5.3.)
dx

Thus, roe family of vlocity characteristics is coincident with the

active family of slip limes i en the other family n orthoonal.

The velocity field characteristics are shown In Fig. 6.9 in the xy-

plane and In fig. 5.10 In tN t -charactotistic plane. In region 060 the

angle 13 maintains the constant value determined by the stress solution to 'to

Then. In this vegion. along Or'i lines v - const.

atonT tn(a+ 04 11 (s..0)
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and along z a const.

-1 . . cot T; cot'(a + r)dX + dvf 0 (5.3.5)
dn v

integrating the equations to be satisfied along the characteristics yields

along u - const.; v cos(a +r ) - Cu(U) (5.3.6)

along z - const.; v sin(a +Y) - C (z) (5.3.7)

The initial velocity distribution will be specified at the boundary formed by

the yielding struzcture.

It is assuwed that the soil particles immediately adjacent to the

yielding structure will mwve in a vertical direction, that Is. a 0. Also.

by virtue of symmetry, the soil particles must move vertically (a 0 a) along

the axis of symmetry AS. These boundary conditions are given by

on so v - v (Y) (5.3.8)

a-a

on AS Cl a (5.3.9)

Since both a and v are knowin along the non-characteristic 10. the

solution mr, be obtained in the triangular region formed by I0 and the

chdracteristic, I1111 and 09I through the points S and 0. fett. th6 solution

may be obtaincd ir the region ll since a I-, . 0long the rnm-.Cractetristic

SE.

At this stag,. c~,ditions in the curvilinear region 0K0 must be

tons ide-ed.
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In region OCO it is convenient to express the equations In polar

coordinates r,6 with r measured from the origin of the xy-coordinates and e

measured from the positive y-axis, positive counterclockwise. In the new

coord'nates, F And 3 represent the angles bet..een the positive directiou,

of the rad;us vector ard the directions of the maximum principal stress ant4

the velocity vector v, respectively, taking counterclockwise positive. By

using ocdar coordinates in region OCD, the angle 0 has a constant value

equal to

- , - " (5.3.10)

Ig1 Section 3.6 it was s.Own that the anoles • and I in polar coordinates

are related to 0 and a by

•--o.-e-
2

(S.3.11)

2

The characteristics In polar coordinates &An the relations to be satIsfI-td

along them for dy/dx a tan(P -y) ,.ilv. are (cf. Eqs. 3.6.3 4aM 3.6oS)

along u - Const.

. ct (5.3 12)

dr r

t 6 a +a Zr) [.2 lo 92L 4r] l. 0

dr r
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+ ar dr dvcot(Cl 4 2T) r + v 0 (5-3.15)

The Eqs. (5.3.12) and (5.3.14) may he Tntegrated to yield the

characteristics

I U COfSlt,

r r e (0 + - ")tan T

z a const.

r re (e + T y)cot '

where r0 is measured along 00.

Along the limiting slip line CO, the normal component of velocity

Il
vanishes so that the velocity vector at any point on CO has a direction

given by the tangent to CD at that point.

Then along CD the angle 3 is

; - Z - . (5.3.16)

SubstItutiog this value o! 3 Into (5.3.13). the equat on which

holds along the u - const line CO, yields

t~n(12x) cotT dr dv 0
"I r-

Since tan(2n) - 0, this equation shows that along COI

dv:O - 0

or (1.3.171

1CO a const.

The value of a in xy-coordinates at poInt 0 is
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Substituting this into (5.3.5), the differentia'ý equation to be

satisfied alonu the z =const. line DE, y~elds

daDE 0

or (5.3.18)

1-1DE 'const.=-r

Equation (5.3.18) ihows that the angle a uneervoes an abrupt change

'gthe characteristic DE. Substituting the value of a given by (5.3.11J)

into (5 3.7) shows that v DE is arbitrary. The value of v DE to be used along

DE in extending the solution is obtained from the condition that the components

of the velocity vector normal to DE must be continuous when the direction of

the velocity undergoes an' abrupt change across DE.

The value of v along CD may now be obtainsvd from the initial velocity

at point D

CO Cosr

6oW- I~ an-d v are. now known along the charactdristics CO acid Of

and the so~ut ion tuay be extended into the region OLE C bounded by the InItWi

chxrocte'ristics DE and DC and the characteri~ttlc Ef5 and CE 5. The solut'rm

:t, nex: obtained in retoion Ef F m'inc srt ame way 41% rf;.on so E. This method

is continved until the solut ion it obtained in the region IOC94

A me~o of finite-differencts is used 'in obtaining the solution in

the curvilintear region OCO since the equations to be satisfied along the

characteristics cafý not be inittgrated as they could It, reglor- 080. For the

finite-difftcrn~c solution the region is divided Into 4 network of u and a

..haractcrretstics and the node points are numberet by the coordinates k and L

taking i alonq the u - Cen't lin~es and k along the i const. Mlies.



Expressed in finite-difference form, the equations along the

characLeristic become

along u - const..

tan~a k~i- + 2.r){a kL ,i ~-l 'cot T [rk,~kI ] - [~ k.J:_)l 0

(5.3.20)

along z cOnst.

cot(& + 2Y)40 a krr.," +""'Cl r ! C+I .] 0

L rk-I , " Vk+t. ,L J

(5.3.•)

Knowing the values ef ý and v at tne points k,5-l and k-1.1 the

above alsbralc equations may 6e solved to yield 3 end v at ths poitt k,5.

The solution for the valves of 3 and v at node points on the

line 00 are obtaened by solving (5.3.6) end (5.3.21) simultaneously. Using

!,,3,1t), the equations to be solved for points on 00 are

end

v kAJ 14-11 .9Cot 0l. 111 + + k.1 ~ -ak1. + tanj + kl,

(1.3.23)
S•Acre

m k-, "'k.1.1 l- I I

S61t/__kl akl
' ' ' " " " ''" ' "' i ri '



The solution for OAC ,• car:-,..d uut in essenc'alhy the same wal.

5 4 VelcciLX.Fielk for the Mf.:ro-itructvral T heory

The velocitv field solj;,cn obtalntO with the second kinematic

relation will be r.re;ented for tht correfponding stress ficld solutions of

Sttions 5.1 and 5.2. Thu velocity of the yielding structure will )a aspsame

to be uniformly d'stribuced, that is. ýha structure is a&smad to move dam

as a rigid b.dv. This behavio7 .orrespcnds to the stress flel*. soo, tions

given in Section 5.2 in wHch & region of the aratiular medium remaens elastic

and moves essentially as a rigiti •fd"l'. lolitions for tn. case of a non-MlIfomrn

motion of the struc;ture are given in Section 5..*,

!he -elocl.y *,jetion of the 4asic system of the second kinematic

relation was given in Section 3.., in polar coordiite%. For dy/dc - tat(-

active, this equati•n becomes

s in V sin 90(5.1 -

or r r

The differential eaqvtioA of the charecteristic# wich eorrosanmd to tshe ativm

slip lines is

!IV 4.4i

and the diff'rentlal ioel&ton which msit be letis'l i Along the arcuacteri~tlcs

Cqatio,•n (6,4.3) yield)

v-6v.,
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wnere v1 IS isn arbitrary co.nstant.

in region 0CD ov Fig. 5.01, the velocity vector at any point is

tangent to the slip line given by Eq. (5.4.2); however, in region 000' the

velocity vector is vertical. This requires that a velocity discontinuity

tornis or. tho! cha.acteristics GO. Sim~larly. the velocity is discontinuous

across the characteristic 0%^. Across a discontinuity of this type only the

tai-gcntial compenerts of velocity are discontinuouis while the normal compo-

nerts are continu.ous 1

The velocity in region 0CD just acriss the discontinuity 00 may bs

ibtained in terms of the velocity of the st~ructure v q *by equating the normal

components of the velocity vectors on each sid1e of 00 as is shaviin In Fig.

5-12(a). From Fig. 5.12(a)

vqrW v q sin (r + 15 0) (5.4.5)

$ince the nu.c*iml campooants of velncl'.y are equal,

- V~ cos(I - Zr)

or(..)

V a(s In V IS

Do c~s(AJ 2YZ)

The arbitrary con' tont in Eq. (5.42.) rly I'. evluate as follows:

*00 (T + 1 ) t an 9
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E-.4uation (5.4.4) now becomes

v0ODe 2 O t0n0 (5.4.7)

The velocity on OC is obtained by substituting the value of 9 on OC Into

Eq. (5.4.7).

v = v *(0OC - P00 ) tan 9 (S.4.0)

cc 00

The velocity in region OCC', Vp, is obtained In terms of vo C by

equating the normal components of velocity across OC as is shown In Fig.

5.12(b).

Scos(T + a "1) (C.,.9)

Substituting Eqs. (5.4.6) and (5.4.8) Into Eq. (5.4.9), one obtains tih

velocity in region 0CCI. vI, as a function of v . the velocity in rglen

0'. .

q sin(' + OD eaOC - .00) tan 0

4 1111r + 0C '9

f:or the stress field given in Section S.1. 0 0 It/2 an 6  S O.

Then Eq. 15.4.10) becomes

v -V tena eI (1.4ton r

it may now be shom that overall continuity of the vwleclt.y field

is satisfied. Multiplying th velocity of (M'C by the length CC' iven by

Eq. (5.o.14), On• obtains

v - CC' - V F i.sin(..*0 a 6 6 K ) slny0Bton VL + 0

1 ' I
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or

CC, - v L
P q

T hus. a velocity field has been found which is compatible with the corresponding

stress field.
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6. RESULTS AND CONCLUSIONS BASED ON THE QUASI-STATIC THEORY

6.1 Comparison with Experiments

The results obtained in an analysis using the Geniev theory of

motion of a granular media to predict the intensity of air-induced overpressure

transmitted to an underground structure are shown in Fig. 6.1 along with experi-

mental data obtained by Seli1g, McKee and Vey. 10.22 The experimental work was

coniducted with a dense. cohesionless Ottawa sand (9p - 3S'*) contained In a

glass-wailed pressure device. The yielding structure was a 4-inch square plate.

It may be readily seen from Figure 6.1 that the experimental pressures requiredl

for failure are Aeveral times greater than those predicted by the G"enie

theory. The lack of agreement between these two curves Is to be expected

because of two major factors. For one, the experiments were not actually per-

formed under conditions of two-dimensional plane-strain as assumed In the

Getnlev theory, since the glass wells of the preisure boxn contributed same

frictional resistance to slip. Also. and more significantly. the BenieV

theory used here assumes that plastic flow takes place at constant volume.

that is. the flow is incompressible. in the case of granular matterIals. this

assumtion is correct only oftitr Initial slip hae occurred and the flow field

is establIshed. for a 01ens granular material. Initial slip must be

accompanied by an Increase Int volume as the indIvIduial particles "'iialth

from their positionto In the dense state and r.de ver iidlscort grain$ on the

slip-plane. This intuitively spqwrent beabavior has been proved catluslvely

23.24
bv ernperlment . As slip first occurs, there Is a chang In v1lw of

the qran4I&- mass. and after a certain strain the deformastion settles dee

to ant occur.Ing at constant volume. It Is In this 011Stant volume d16efrnatilln

that L.Ii 4eniev theory Is ePplicable.



The volume increase required for slip in dense granular sails and

the lateral co.straint provided by the soil mass itself h,ve a significant

effect on the pressure required to produce first slip. Terzaghi has Indicated

that the so-called internal friction of the soil is a functiol of the amount

cf lateral expansion possible in the soil and that the angle V may vary between

wide !imits 25

In another paper, Terzaghi states that for granular materials the

value of m, the angle of internal friction, may varf between the limits of
26

30 and 54 degrees. If in the Geniev analysis the value of cp is allowed to

vary in accordance with the degree of lateral constraint provided by the soil

mass at various dept.s. a failure pressure vs. depth of burial curve is obtained

vkich gives much improved agreement with the expertmental results as shown in

Fig. 6.1. The assumed variation of ( with depth is presented in Fig. 6.2 as

the ratio of the value of i used in determining the failure pressure at a

particular dOoth to *0. the velue of Internal frictio" determined by the usuat

laboratory tests. The value of 0/Vo Is assumed to vary fro 1.0 for structures

placed near the qra*.4 surface where there it a weall lateral constraint to

1.5 for a depth at ourial equa' to the span Ie".th. At greater depths the

value of /1% is astmed to renian constint, Atthough the angle of internal

friction 9 is sham to vary with depth in Vl3. 6.2. it is not treated as a

varirable at any one particular depth. Solutions Including the eifoct of

lateral constraint may be obtained by ubing t0i. *ztue of % to determine the

sh"ee of the slip field mad then incorporating thi efft.ct of latrarl constraint

by dietermining the failure pressure based an the value of l givr In Fig. 6.2

for the particular depth assoKajted with the slip field. This appr-Weea Is
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undoubtedly only approxirn.te bit it does provide an indication of the pressure

required for first slip of the soil.

Sin~e the pressure required to maintain slip in a dci'se granular

masterial is less than that required to proauce slip, it is clear that a

question of stability is involved in regard to the safety of the structure

after first slio hi,s occurred. Whether or not complete collapse of the

structure will take place depends on the intensit'j and timewlie variation of

the loadinq pulse aid the ductilsty of the structure. However, the question

of stability does not apply if the failure pressures are detormlned by the

Geniev analysis (without the lateral constraint correction), since the fallura

pressure is based on that required to maintain flow not %,- it, and thereby

neglects whet may be an appreciable, although hi-jhly undependable, resistance

of the soil.

6 2 Cowpari son with Previous Theoretical Studies

A theory of plastic flow of granul~r media develope" by Drucker

and Prager 27babed on the concepts of the plasit c potential 23.2a has boon

applitd by Shield 30to problems of plastic flow In granular tails. len this

kheooy plastic flow of a roanular media is al-isys occvmponled by a volume

Increase (a pruperty 0-ucker and Prager refer to as dikatancy). However

in this theory the volu~me expansion continues at the sam rate for 4ll values

of skrain; o very unlikely event for continued *latic flow and a behavior

which txperimefttal evidence ha% shown does not occur. :3 Ganiei Cites

ex~perimental work an a particular problem solved analyt;cally by Shield using

the Orucker-Prager Theory. The test results abtdicate that the flow tro-

jectoriss predicted an the basib of a constant rate ci volumetric wtain thee y

arp not realized. Rather, the experimmntally determined flow field could be



better approximated by a constant volume (zero rate of volumetric strain)

theory such as Geniev's.

Another solution of the underground structure problem is included

in a theory presented by Terzaghi for the design of tunnels at great deptls.-

This theory, modified slightly to correspond to the specific problem considered

here, is based on the assumption that the vertical stresses are uniformly

ditriebuted on horizontal sections and that the slip-planes form vertically.

According to this theory the pressure applied at the ground surface to cause

fai ure i% given by

p0  q eup (2 -ýK tan 9P)(..)

where K is an empirical coefficient which represents the ratio Wrn/lv o the

surface of sliding. Terzaghi recomended that the value of K Le at least equal

to unity. Failure pressure vs. depth curves for Tertaghi's theory with

K - I and K., 1.5 are showin !n Fri. 6.3 along with a curve for the Conlev

theory for q. 35°0 and k a 0. The experimental curve given in Fig. 6.1 Is

also shown for comparison.

It may be sen from Fig. 6.3 that the general trend of the Teraghli

curves does not follow either the Gonlev or the ewperlmental curve except

at depth-span ratios greater than about I.$. where theTer1*hi L-nd Glenv

curves predict very nearly the same failure pressure.

Also shoen in Fig. 6.3 Is a curve for a theory pre*Mets by SelIg.

mcKee and Vey. the *dme group who prteseted :t;r experimental results shown in

Figs. 6.1 and 6.3. Their theory is baed on the formation of veri.cal slip

planes and a uniform distribution of vertical stress on hor'teotal sections.

For the qussi-stetic case of a uniform. slowly varying ov*w%,ressure. this
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theory is csserntialy the same as Torzaghi's with a linear variation of

failure pressure vs. depth on semi-logarithmic coordinates as shown in Fig

Takagi has presented a theory of granular soils defoemation ii'

which the volume change resulting from the plastic deformation may be taker

into account. Unfortunately, the rate of volume change is considered to bt

constant depending on the nature of the deofrmatlon. As a result, Takagl'•

theory does not account for the real behavior of expansion or contraction •"

the start of motion and subsequent slip at constant vo!me.
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6 3 Limitltion- of the Theo:-y

The risu'ts of chis stuldy indicate that the Geniev theory has

several sig;7ificant limitations when applied to the problem of underground

structures in a granular soil subjec'ted to air overpressures. The fact that

the deformation is assu%,#d to occur at constant volume does not allow the

vol•me change occurring at mnitial slip of a dense granular material to be

taken intO account. This neglect of the volu~e increase at initial slip is

Darticularly significant in the type of problem considered here, as the

ttndency fcr a volume increase brings into pl.v a considerable lateral con-

ýtraininq effeca ir. the soil which serves !0o Veatly increase the resistance

of the soil strvctt~re system against Oip. In contrast to this. a constant

volume theory sholre n•,nirckce little error for problems in wmhich the soil is

pornit'e4 to expa'u *t a fre surf*c, sush as In the determination of the

passive earth pv ss;;ie of roraini•tg walls and the bearing capacity of footings.

Anotmer weakness of the •,ciev theory common to all theories of

r imid e, t"< •eh.yor .! the fact that no informattIon is &avalloble regarding

tie f',r;ii',& of fai. '%e .metls fram the pri',ic"'s elastic equt llbrium state.

f,- ".-C-rds. with rigid-plastic theories it is not possible to predict the

erigei ,nd trace the growth of distresses regions in the mediu since the

el*stic stress distribution prior to flow is not availoble On thk other

'iond, with elasto-plastic theories the formation of fa' lure tones sey 44

preuicted froi the elastic solution by incre"'"g trte loads wtilI the flow

criterion is tis
ile-d.

An iaportant coliic,0to in theories of oraesvler -irdla atises

fret- the fact that the failure criterion Is a funCtion of the 0 i..ma ___
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stress a* a poin~t *3"ndrot sjilpiy a f-c~tion of tS* deviatoric componen' of

stress as is the case with ideal plasticity. For plasticity problems it has

been shown that upper and lower bounds for the fal lure losd may be obtained

by application of limit theorers 32,33, In aiton, these theorems

guarantee that any solution which is both statically and geometrically

admissable must give the correct fealure load. When the yield criterion

depends on the meaw normal stress, the bound theoraus of plastlcity do not

appli and the failure load cannot easily be bounded. Nowever, a theory such

as 6*Ilev's which neglects a porti4oe of the soil's resistance will give

cOhservative, failure pressurei.

failure asessires obtained with the 1eniev theory may be Improved

to account aporrw• m.tly for the effect of lateral constraint of the joll at

initial slip by assu•ing the a"gle of internal friction 9 to be a functien of

the awm t of sWi I cnver over the roof of the structure.

Since lcrle defolratons of a granular meie occur essentially at

constant volume, the ISalev solutions should provide a good estim te of the

resistance of the sol I-strutSre syette to sustained leads If the st•ucture

has sufficient dctl lity to withstand the Initial displecamalt.

The resusts of this study indiate that a theory owe realistic

than •Alv, Is sneee4 for the analysis of the truly dynamic Prosisl of

i ll-strvucthre Interaction. This more elabot.ta INOPy must neem.aasily

include the effects of *lepmslew or cntractlet of thse granuler sell Oa

motion takes plow and the relatlm IKnosm this velmms chem.. the

"fal "ire law. In aditien, the mo, of development of le lue two t r iS

clarification In future work.
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APPENDIX: APPROXIMATE DYNAMIC THEORY FOR SOIL-STRUCTURE INTERACTION

A.1 General

The purpose of this Aopendix is to present a simple approximate

method of introducing time into the .uasi-static solutions obtained in

Chapter S. In developing the approximate method it is assumea that the slip

lines found for the 4uasi-static solution do not change appreciably with

time. In this way, a one-dimensional treatment is possible which, for long

times, approaches the quasi-static case previously found. For simplicity in

this treatment the resistance of the structure was taken as constant.

For extremely snort times, of the order of the time for the first

effects to reach the structure from the surface above it, it is nýt easy to

give an a eirori Justification of the present approximate theory. The final

evaluation of this approximatiorn will have to await comparison with more

exact analytical solutions or with ixperiments.

We consider here the static problem, treated in Section 5.1, of a

long plate below a finite depth of soil layer. The sol Ilytr is supported

by a rigid plant except for the part carried by the plate. The static and

the quasi-static solutions of this problem with a uniform static load on the

top of the soil layer is treated in great detail in the main body of this

report, Referring to Vig. AI, the values of 0 in the regions OAI end OCO

are 0 and . respectively. In tlz region USO, 0 is given by

Equation of slip :ine 1O is

I " .(P-y ) tan 9
r - L cosec T a
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The depth of the soil layer as a function of the span of the plate

and the angle of internal friction of the soil is given by

h 2 L (cot r + e-2 2

2 4 2
h 1- tan~. 4 u, +2

A.. 8ics;c Equations of Approximate One-Dimensional Problem

The stress components are expressed in the tollowing way:

I + sin ( cos 20, H(x,t) (A.Z.la)
L- sin e cos 21J

a C H(x,t) (A.2. Ib)

F sin T sin 20 H(x.t) A.2.lc)axy LI sin ip cos 20J 1A2.

Here t3 - D(x,y) is known throuSnout the region and H(x,t) is

unknown. We can isolate a small layer of the soil such as A0 A SI 10 at

any height x, and consider the equilibrium of that flemental layer. From

Fig. A.2, it can be seen that the layer is acted on by the vertical average

stress *'x) H(x,t) along A0 S0 and the normal and tangential stresses on and

n on the inclined faces AI A0 and I I10 The stresses an the inclined

faces have to satisfy the boundary condition

Irn a on tan (P

To find the normal component a n, we refer to Fig. A.3 whi.h sh•ws

an elemental soil mass at the .iclined boundary with all the stresses acting

on itt three faces. From Fig. A.3 we have
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ao +a L-a Cos O +0 sin 13+7 r+q)xds xy ss x xy

a dx d+a a sin (13 + qr )) +a cos (A + + (P)
y ds xy ds y xy

o - Xcos (0 + y+ p) + Y sin (0 + y + P)n

• a Cos 2 (P + -r + cp + a sin (13 + 1" ) + a sin 2(1( + " + 9)

Using Eqs. (A.2.1) and simplifying, we obtain the twormal and

tangential stresses to be

a Cos2  4(m,t) (A.2.2,)a n si T co s 2 0

r sin 0cos " H(x.t)
in . - (A.2.2b)

The total vertical cowonent of the normal and tangential stresses Is

F -a cos ( yer -() +w sin (.)+T*) -1 Cos. bct ] P(÷' t)i n n L I- sinO 0Cos Hx)

The total vertical forces from the two facets AO A and 0 I,:

2 F Em

2 F Es 2 A 2x " f(e) "(O.t) Ea

where f(JS) is given by

f ON'
sitn (6 *V) k ( . 0%. 0

Writing the equlAti M of motion in the vertical direction, we h4ave

-9141(,) (M 9) m IN H 9 0(a) - V (0) N dm * I(x) Em-

0 o(m) dE m

SI I I I I I I! I I I I I I I I 11 I IVI



He re€,

SI(x)r()dy
2 i(x)

whe re

r (fl . 'I + sin p cos 201
! I - sin o cos 213

1(x) - length of the elemental layer at a height x,

X - body force ýntensity

a aceleratior. of the- layer.

+ - v + . since x is an tulerian coordinate,

v(a,t) dverage velocity of ti layer

S.mplifying the above expression, we obtain the equatiom of motion

of the layer 'n thee form:

-- w (a) (a) N - *v- (A.2.3)

where

rrT

the velocity v(a.t) 'tot to tatisfy tlt continuity equation which ii Ov tlh

form,

Here we have two uekesvoien$. K(.,t) and w(a.t) and two equation&. (A.2.3) &PAe

(A-2,41 to obtain the..

I coo



A .3 Expressions for 13(y.,y) and i(x)

To obtain the function *(x), we have to evaluate the integral

I

+J I P ~ (10) dy
2 T(x)

Th;s is difficult to do exactly since P(x,y) is a complicated function of

x and y and, also, the limit y ± I(x) is actually a transcendental function.

Instead, we can find an approximate expression for the average value of

O(x,y) over the range -h < x < 0 as a function of x only. Then,

D(x,y) - 0(x) and P(P) - r(A)

We can obtain the function #(x) easily as follows:

*(x) a J I ()dy

S• 1(x)

7 IN

Now, A(x) has to satisfy the following conditions:

0.-, 0= o x .0 (A.3.1a)

.. '"0 u--h (A.3.1b)

S---h (A.3.1c)

We can take 1(x) as a polynomial In x with five constants and

obtain the constants to satisfy Lhe conditions (A-3.1). Then wt get the

following expression for O(x):
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2 22
!4 (I .+ ! + (A. 3. 2)

where
2

h h

'h h h 2

ffh h 2 (7h2)

h

Now,

0I - sin ip sin2)

We need this derivative of *(x) In evaluating the function t(x).

The function J(x) which gives the wiath of the elemental layer at

any height x is required to evaluate the function t(x) which Is a variable

coefficient of to, (A-2.3) in cartesian coordinates, if we assign any value

for x, we have to coop*. J(x) as a solution of a transcendental equation, as

th, equation of the curve 1O in Fig. A. iIs known in polar coordinates.

Instead. we can assignvalues of angle 6 in the range T and (r + f and then

compule the values of JAx) in a very simple mnnnr fr•i the following

equations:

S(x)-----. [sin, . ' at-n,
sin i

* - 0 +I"(A.3.3)

T~~ + S
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These equations are useful to compute the functions *(x) and ýk.A) as functi,..s

of e.

A.4 Boundary and Initial Conditions

On the top of the soil layer a uniform load which is a function of

time acts vertically down. At the bottom of the soi! layer, the compnnent

of the stress in the soil normal tc the plate at the interface will be the

load on the plate so that this is resisted by the inertia of the plate as

well as its yield resistance. It is assumed that there is no separation

between soil and the plate along the interface so that the velocity of a

point of the plate is the same as the adjacert velocity of the soil. Hence,

the boundary conditions may be defined as fo!lows:

on the top where x - -h

wo a P(t)

at the bottom where x - 0

ax-op hp at + K(Ot)

where

O - density of the material of the plate,

hp a thickness of the pluce

K w yield resistance of the pl4',:.

Using Eqs. (A.2.1) the boundary conditions mty be written as

I + sin ~Pt
H (-h, t) 2-A- P(t) x - -h (A.4.la)
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H (0,0 sin (pp hp 6(o.0+ K) x 0 (A. 4 . Ib)

T + s in V ~ph ~-
Tne initial conditions may be

H (x,o) - H (x) and v (x,0) , v (x) at t 0 (A.4.2)
0 S

A.S Method of Solution
Equations (A.2.3) and (A.2.4) are quasilinear with two unknowns

H(x,t) and v(x,t) and they can be solved by the method of characteristics.

The density of the soil p is taken to be a function of pressure, so that

p - p(H)

then d h (Hh~x dN

o nd (H

where p' (N,

Substitutinr these expressions into Eq. (A.7.4) we obtain

0 (A.S.1)-v 9+ Pt+ P o1

dHm N dt

Substituting these e.'tations into 'A.2.3) and (A.S.)) end simplifying, we

obtair.
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_ + BXmPmmmm•[., - .. d1 (A.5.2a)

dx 6v t (A.5.2b)

From Eqs. (A.5.2) vie can solve for the partial derivatives of H(x,t) and

v(x,t) to get the characteristics and the equations to be integrated along

them as follows:

(pX dv dxd

aH __(A.S.3)

dx

(v ft)

By setting the denominator equal to zero and sirplfylng, we find

the characteristic equations

Sv (H) 5.4)

where

By setting the numerator equal to zero, we find the equations to

be integrated along the characteristics:

00 d. (1.) k + H1,. - 0 -0
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Hence, we have the following set of ordinary differential equations:

dx- v + g(H) dt - 0 ]
L (A.s. 6a)

!Ux-dH + o() dv +[ (x) H X ]dt-0

dx- [V - 4(1)4 dt- A 0

(A.S.Gb)

Ux td" - p(") dv- t(x)X-NX dt-O

We have thus reduced the quasilinear partial differential equations. (A.2.3)

and (A.2.4) to a set of ordinary differential equations which can be solved

numer;cally by the method of finite differences.

A.6 Method of Finite Differences

Equations (A.S.6) may be written in finite-difference form for

the purpose of numerical computation. The first step Is to transform Eqs.

(A.5.6) to curvilinear coordinates of the characteristics. Let the first

and the second characteristics, respectively, be given by

U - U(At) 0 constant

Z - Z(x,t) a constant

We can take these as curvilinear coordinates end transform Eqs. (A,1.1)

from xt-plane to UZ-plane by treating x, t, N and v as functions of U and Z.

Along the first system of characteristics we have

dx d dtu4-jdZ

Of -~ Q d, - dZ
106 .
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Similar relations are written for the U-characteristics.

With the help of these relations, Eqs. (A.S.6) may be written in the UZ-plane

in the form:

I- + +() -- O0

Ix v (H) , 0

(A.6.1b)

Now, the derivatives can be written as differences over a finite length as

follos:

f f k , , " a f k - I ý S f k . & f k .1- 1

Following this rule, Eqs. (A.S.6) are written as differenu. aqutions

as shown below:

(K k .1,I - I ['k.,-I + M(" .- , (tk.," t,.,.|)-0 (A..e)

(x - - L..ia -r(..,,a) (tka - tk.ia) 0 (A.6.2b)

*k.-" IH "k, - ÷ " (,%.S.2c),-AT" kl .4) It.- 1)~l Dkl. -I ("ItA1 vIt. A ) +,

"[ k. I . -I I k, A IIk.1-1] At, 1 0
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*ki i

.. (Hk, Hk° , (v kJ v kA) (A.6.2d)•--Hk_,; "p k- 1. 1 kýL(k• ,•

"- [k-I., Hk-1, - P-k-11 4-1,AJ] At 2 0 0

Equations (A.6.2a) and (A.6.2b) give the values of x and t at any

poiiat (k,A) in the UZ-plane with the known values of x, ý, H and v at the

previous points (k-I,g) and (k,1-1). Similarly, Fqs. (A.6.2c) and (A.6.2d)

give the values of H and v at the point (k,i) with the k.non values at the

previous points (k-I,J) and (k,J-l). Using these relations a computational

scheme ,ay be easily arrived at.

The network on the UZ-plane is shown In Fig. A.4. AS represents the

initial conditions. In the rigion ASC, along the line All, we know the values

of x. t, H and v, the given initial conditions. At points along t 0 0, we

have the following data:

Points (6,1) (s5Z) (4,3) (3.4) (2.5) (1.6)

t 0 0 0 0 0 0

s/h 0 -0.2 -0.4 -0.6 -0OS1 -1.0

H H61 HS2 H43 134 ias 14 1

v 61 vSv v 2S IV 16

Ve may caivte x, t. H and v at various points In the region AMC

in the followiaig Mnner:
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(6,2) (5,3) (4,4) (3,5) (2,6)

(6,3) (5,4) (4,5) (3,6)

(6,4) (5,5) (4,6)

(6,5) (5,6)

(6,6)

At each of these points we have the following four equations:

(x66 - x 65) - + 4(H6 5)] (' 6 6 - ' 6 5 ) a 0 (A.6.3s)

(65
(x66" x 5) " [v,6" P("5)] ('66 " '56) "0(..b

#6 - H65  
06, (v.6 - v6,)

6(A.6.3c)

46 "5  - p65 '65) 6t so$55

N-- T (66 -6 H55 OS5 (v " S) -

(A.,.3d)
(CSs wNA p- x0') 'a - 0

where

Si" (t " t 6s)
t - (6- )

at (t~ -6 t

in tiu region ACO, we way proceed aleoa the points shw1 below:
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(2,7) (3,7) (4,7) (5,7) (5S7)

(3.8) (4,8) (5.8) (6,8)

(4,9) (5,9) (6,9)

(5,10) (6,10)

To compute the "alues at the point (2,7):

(x27" x2 6 ) - [" 2 6 + "(H 2 6 )] (t 2 7 - t26 0 (A.6.40)

x2 7 -h (A.6.4b)

p26  -(.,€#26T (N27 - H26) + 026 (v 2 7 - v 2 6) + (A.6.4c)

"i (t26 "26 - 026 x 26 ) (t 2 7  t2) o 0

N 27" +i 0(t 2 7 ) (A..4d)

These equations are to be used at points (2,7). (3.1). (4,0),

(5,10) and (6,11), which are the boundary points. At the other points, the

so equations as in the region AIC are to be used.

In the region ICE, the valuts at points are computed in the folliv-

ing manner:

(7,2) (7.3) (7.4) (7.S) (O,)

(6,.) (4.4) (I.S) (5,6)

(9.4) (9,5) (.,)

(i0.$) (•o~1 )
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To compute the values at the point (7,2) we use the following

equations:

(x72 - x6 2) - iv 6 2 - 4(H6 2) (t 7 2 - t 6 2) , 0 (A.6.4a)

x 7 2 ,0 (A.6.4b)

S(H72 H62) - 062 (v7 2  - v6 2 ) (A.6.4c)

" (42 "62 - 062 X62) (t72  t t6 2) "

I - sin T hI fv72 - v62) +'] (A'.4d)
2  1' + sin ) OP Lph t.--j+K (

These equations should be used %t points (7,2), (8,3), (9,4).

(10,S) and (11,6) as the boundary points. At other points, the sae equations

as in region AIC are used.

In the region OCEF, the unknown% at various points are cmputed as

flo Iws-

(7,7) (6,7) (9.7) (10,7) (11,7)

(7.8) (6.8) (9.8) (00,) (It,&)

(7.9) (8,9) (2.9) (10,9) (11.9)

(7.11) (6, 11) (91,11) (I0,,1I) (11.111I

At all these 9oints, sarw equationt Ps in the reaion ABC are used.

The regiu" Oir ;%s %miiar to the reqion ACD and the region (FI is

simi lar to the region act aSn so on.
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